Для исключения ошибок полученное предварительное значение умножают на коэффициент запаса, зависящий от равномерности распределения нагрузки стен на основание и варьирующийся от 1,1 до 1,5 (чем больше площадь несущих конструкций, тем он меньше). Ширина ленты не может быть уже вертикальных стен.
Важность параметра
С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.
Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:
- Характеристики каждого элемента конструкции строения. Система вентиляции существенно влияет на потери теплоэнергии.
- Размеры здания. Необходимо учитывать как объем всех помещений, так и площадь окон конструкций и наружных стен.
- Климатическая зона. Показатель максимальной часовой нагрузки зависит от температурных колебаний окружающего воздуха.
Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.
Назначение калькулятора
Калькулятор для расчёта железобетонных балок перекрытий предназначен для определения габаритов, конкретного типа и марки бетона, количества и сечения арматуры, требующихся для достижения балкой максимального показателя выдерживаемой нагрузки.
Соответственно СНиП «Бетонные и железобетонные конструкции» габариты железобетонных балок перекрытия и их устройство подсчитываются по дальнейшим принципам:
- Минимальная высота балки перекрытия должна составлять не меньше 1/20 части длины перекрываемого проёма. К примеру при длине проёма в 5 м минимальная высота балок должна составлять 25 см;
- Ширина железобетонной балки устанавливается по соотношению высоты к ширине в коэффициентах 7:5;
- Армировка балки состоит минимум из 4 арматур – по два прута снизу и сверху. Применяемая арматура должна составлять не меньше 12 мм в диаметре. Нижнюю часть балки можно армировать прутами большего сечения, чем верхнюю;
- Железобетонные балки перекрытия бетонируются без перерывов заливки, одной порцией бетонной смеси, чтобы не было расслоения бетона.
Дистанцию между центрами укладываемых балок определяют длиной блоков и установленной шириной балок. К примеру, длина блока составляет 0,60 м, а ширина балки 0,15. Дистанция между центрами балок будет равна – 0,60+0,15=0,75 м.
Зачем нужно проводить расчет нагрузки?
Поверочный расчет нагрузки выполняется в следующих случаях:
- при износе здании и его длительной эксплуатации без проверки;
- при реконструкции или ремонте объекта;
- после установки тяжелой техники, которая может повлиять на размер нагрузки;
- при возведении дополнительных построек;
- в случае обнаружения дефектов и нарушений в конструкции;
- перед вводом здания в эксплуатацию, для объективной оценки его характеристик;
- при возобновлении строительства многоквартирного дома после длительной заморозки.
По завершению обследования наши эксперты формируют заключение, в которое входят расчетная и конструкционная схемы, геометрические свойства, характеристики материалов, расчет несущей способности и другие параметры.
На основании этого заключения можно сделать выводы о необходимости усиления опор, снижения или перераспределения нагрузки и т.д. Все это необходимо для того, чтобы строение было максимально надежным и безопасным в эксплуатации.
Позвоните нам, чтобы заказать расчет нагрузки на фундаменты зданий и другие элементы объекта в Санкт-Петербурге. Мы проконсультируем вас и рассчитаем предварительную стоимость услуги. Итоговая цена рассчитывается индивидуально и зависит от вида, объема и количества конструкций.
Что учесть при расчете столбчатого или свайного фундаментов?
Такие основы представляют собой систему квадратных или круглых опор, расположенных по углам несущих стен и по их периметру со средним шагов в 2 м. Глубина заложения зависит от параметров грунта, уровень грунтовых вод не должен подходить к подошве столбов ближе 50 см, нижнее основание размещается исключительно в устойчивых слоях. Для фиксации их между собой, принятия и равномерного распределения суммарной весовой нагрузки обустраивают ростверк, его вес также учитывается при расчете. Такие конструкции менее подвержены морозному пучению и оптимальны в плане бюджета при строительстве легких домов или при минимальных рисках усадки.
Расчет нагрузки на столбчатый фундамент проводится по аналогии с ленточным: исходными данными являются глубина вод и промерзания, несущие способности грунта и общий вес сооружения. Важный нюанс – учет массы ростверка и самих столбов обязателен. Составляется предварительная схема расположения опор для подсчета их числа, рассчитывается их несущая способность. Для получения всех этих параметров важно заранее определиться с глубиной заложения.
Площадь квадратных столбов найти легко, рекомендуемый минимум при заливке из бетонного раствора составляет 25×25 см, кладочные изделия размещают с перевязкой рядов (длина стороны совпадает с размерами блока или кирпича). При использовании труб или свай эта величина находится по стандартной формуле: S=π·R2, где π=3,1415, R – радиус. Искомая несущая способность одной опоры определяется путем деления общего веса сооружения на суммарную площадь столбов. После этого она сравнивается с нормативным значением для конкретного грунта, при ее превышении площадь фундамента из столбчатых свай следует увеличить. Возможны два пути решения этой проблемы: установка большего числа опор или усиление их сечения.
Расчет свай проводят аналогичным образом, при этом учитывается вес не только металлических стенок, но и материала заполнения (бетона или песка). Он усложняется из-за необходимости учета сопротивления грунта для боковой поверхности. Средняя глубина заложения свай составляет 2,5 м, влияние таких факторов, как однородность слоев и их высота, неизбежны. Рекомендуемая формула для расчета несущей способности одной опоры:
P=0,7·RH·F+0,8·U·L·FH, где:
- Значение 0,7 характеризует степень однородности грунта, 0,8 – коэффициент условий работы.
- RH и FH представляют собой сопротивление грунта под нижним концом сваи и его боковой поверхности, соответственно. Оба показателя нормативные и определяются с помощью таблиц в зависимости от вида и состояния почвы.
- F – площадь опоры сваи, в одних случаях она совпадает с сечением, в других – берется с учетом размеров опорной площадки.
- L – высота несущего слоя грунта (упрощенно – длина сваи).
- U – боковой периметр опоры.
Знание несущей способности одной сваи помогает проверить, выдержит ли фундамент вес здания при выбранной схеме их размещения. При увеличении диаметра опор их количество можно уменьшить, как и при организации опорных площадок под нижним концом. Но эти показатели зависят от многих факторов, в ряде случаев минимальный интервал расположения свай нельзя нарушать, при ведении строительства на проблемных грунтах расчет такого основания и его ростверка однозначно стоит доверить специалистам.
Общие рекомендации
Большинство используемых при вычислениях данных являются табличными, к таким относят снеговую и ветровую нагрузку, несущую способность грунта, глубину промерзания и уровня ГВ в зависимости от региона проживания, удельный вес стройматериалов. Для упрощения процедуры расчета целесообразно использовать онлайн калькуляторы, позволяющие быстро проверить соответствие выбранных параметров фундамента. Для исключения ошибки проводится анализ грунта: пробы собираются на 20 см ниже уровня глубины промерзания и скатываются в шарик.
Песчаники узнать легко по внешнему виду, на несущие способности у них влияет размер фракций: 2 – для мелких, 3 – у среднего, 4,5 – у крупнозерного песка. Супеси вообще не соединяются в единую массу и рассыпаются, расчетная нагрузка у них принимается равной 3. Покрытие шарика трещинами характерно для суглинков, средние несущие способности у них варьируются от 2 до 4. Выкопанная яма не засыпается, отслеживается ее заполнение водой (в идеале – весной, в период подъема паводков).
Расстояние от верхнего края воды до нулевой отметки почвы определяет глубину заложения фундамента и потребность в усилении (утеплении, засыпке более толстой подушке).
Ошибки при анализе геологического участка обходятся дорого, пропускать этот этап нельзя. С видом стройматериалов для стен, перекрытий и кровли, типом, размером постройки и этажностью определяются заранее. Все эти данные вводятся в графы калькулятора, итоги расчета используются для выбора ширины ленточного основания, числа и сечения опор для свайного или столбчатого. Важны любые мелочи, вплоть до веса утеплителя и фасадных систем, увеличение фактической нагрузки свыше расчетной в процессе эксплуатации приводит к усадке или подвижкам фундамента и снижает его устойчивость.
Пример расчета
Рассмотрим пример, как выбрать фундамент для дома и рассчитать основные нагрузки.
Пусть по условию дан двухэтажный дом в средней полосе, 6х6 м с 1 внутренней стеной. Высота этажа 2,5 м.
- Находим общую длину внутренних и внешних стен:
(6+6)*2+6=30 (м) – на одном этаже.
30*2 = 60 (м) – на обоих этажах.
- Определяем площадь стен:
60 * 2,5 = 150 м2
- Вычисляем площадь цокольного и чердачного перекрытия:
6 * 6 = 36 м2
- Поскольку кровля обычно выступает за стену дома, примем длину выступа за 50 см и рассчитаем площадь:
7*7=49 м2
- Пользуемся справочником для определения удельного веса.
- Далее находим дополнительные воздействия:
49 м2 * 100 кг/м2 = 4900 кг.
Всё суммируем и получаем нагрузки, передаваемые на фундамент дома:
Тип дома | Стены, кг | Чердачное перекрытие, кг | Цокольное перекрытие, кг | Кровля, кг | Снежный покров, кг | Итого, кг |
Каркас | 7 500 | 3 600 | 5 400 | 1 470 | 4 900 | 22 870 |
Кирпич | 40 500 | 3 600 | 5 400 | 1 470 | 4 900 | 55 870 |
Железобетон | 52 500 | 18 000 | 18 000 | 3 920 | 4 900 | 97 320 |
Глубина заложения
На непучинистых грунтах не должна быть меньше расчетной величины промерзания. Минимальная глубина – 0,5 м. Поскольку в большинстве регионов России предел промерзания земли составляет 1,2 м, то фундамент закладывается на глубину от 1,5 м. Жилой дом исключает замерзание почвы под собой. Минимальная глубина не должна быть меньше 0,5-0,7 м при этом рыхлый грунт заменяют слоем более плотного.
Пример сбора нагрузок на фундамент
Исходные данные:
Предполагается строительство жилого 2-х этажного дома с холодным чердаком и двухскатной крышей. Опирание крыши производится на две крайних стены и одну стену под коньком. Подвал не предусмотрен.
Место строительства — г. Нижегородская область.
Тип местности — поселок городского типа.
Размеры дома — 9,5х10 м по наружным граням фундамента.
Угол наклона крыши — 35°.
Высота здания — 9,93 м.
Фундамент — железобетонная монолитная лента шириной 500 и 400 мм и высотой 1 900 мм.
Цоколь — керамический кирпич, толщиной 500 и 400 мм и высотой 730 мм.
Наружные стены — газосиликат плотностью 500 кг/м3, толщина стеной 500 мм и высотой 6 850 мм.
Внутренние несущие стены — газосиликат плотностью 500 кг/м3, толщиной стены 400 м и высота 6 850 мм.
Перекрытия и крыша — деревянные.
Конструкции, которые могли бы задержать снег на крыше, не предусмотрены.
План фундамента.
Разрез дома, с действующими нагрузками.
Требуется:
Собрать нагрузки на центральную ленту фундамента, расположенную под внутренней несущей стеной, если грузовая площадь от перекрытия 4,05 м2, а от крыши — 5,9 м2.
Сбор нагрузок на внутреннюю несущую стену.
Определяем нагрузки, действующие на 1 м2 грузовой площади (кг/м2) всех конструкций, нагрузка которых передается на фундамент.
Вид нагрузки | Норм. | Коэф. | Расч. |
Нагрузка от пола 1-го этажа (q1) | |||
Постоянные нагрузки: — нижняя обшивка из досок t=30мм (ель ρ=450кг/м3) — утеплитель t=180мм (пенопласт ρ=20кг/м3) — доски пола t=36мм (ель ρ=450кг/м3) Временные нагрузки: — жилые помещения |
13,5 кг/м2 3,6 кг/м2 16,2 кг/м2
150 кг/м2 |
1,1 1,3 1,1
1,3 |
15,4 кг/м2 4,7 кг/м2 17,8 кг/м2
195 кг/м2 |
ИТОГО | 183,8 кг/м2 | 232,9 кг/м2 | |
Нагрузка от перекрытия 1-го этажа (q2) | |||
Постоянные нагрузки: — нижняя обшивка из досок t=16мм (ель ρ=450кг/м3) — доски пола t=36мм (ель ρ=450кг/м3) Временные нагрузки: — жилые помещения |
7,2 кг/м2 16,2 кг/м2
150 кг/м2 |
1,1 1,1
1,3 |
7,9 кг/м2 17,8 кг/м2
195 кг/м2 |
ИТОГО | 173,4 кг/м2 | 220,7 кг/м2 | |
Нагрузка от перекрытия 2-го этажа (q3) | |||
Постоянные нагрузки: — нижняя обшивка из досок t=30мм (ель ρ=450кг/м3) — утеплитель t=180мм (пенопласт ρ=20кг/м3) — верхняя обшивка из досок t=30мм (ель ρ=450кг/м3) Временные нагрузки: — чердачные помещения |
13,5 кг/м2 3,6 кг/м2 13,5 кг/м2
70 кг/м2 |
1,1 1,3 1,1
1,3 |
15,4 кг/м2 4,7 кг/м2 15,4 кг/м2
91 кг/м2 |
ИТОГО | 100,6 кг/м2 | 126,5 кг/м2 | |
Нагрузка от конструкций крыши (q4) | |||
Постоянные нагрузки: — внутренняя обшивка из досок t=16мм (ель ρ=450 кг/м3) — стропила (ель ρ=450кг/м3) — обрешетка (ель ρ=450кг/м3) — гибкая черепица (ρ=1 400кг/м3) Временные нагрузки: — обслуживание крыши |
7,2 кг/м2 3,4 кг/м2 3,3 кг/м2 7 кг/м2
100 кг/м2 |
1,1 1,1 1,1 1,3
1,3 |
7,9 кг/м2 3,7 кг/м2 3,6 кг/м2 9,1 кг/м2
130 кг/м2 |
ИТОГО | 120,9 кг/м2 | 154,3 кг/м2 | |
Вес фундамента (q5) | |||
Постоянные нагрузки: — вес ж/б ленты шириной 400мм (железобетон ρ=2 500 кг/м3) |
1 000 кг/м2 |
1,1 |
1 100 кг/м2 |
ИТОГО | 1 000 кг/м2 | 1 100 кг/м2 | |
Вес керамического кирпича (q6) | |||
Постоянные нагрузки: — вес керамического кирпича 400мм (ρ=1600 кг/м3) |
640 кг/м2 |
1,1 |
704 кг/м2 |
ИТОГО | 640 кг/м2 | 704 кг/м2 | |
Все газосиликаных блоков (q7) | |||
Постоянные нагрузки: — вес газосиликат 400мм (ρ=500 кг/м3) |
200 кг/м2 |
1,1 |
220 кг/м2 |
ИТОГО | 200 кг/м2 | 220 кг/м2 | |
Снег (q8) | |||
Временные нагрузки: — снег |
140 кг/м2 |
1,4 |
196 кг/м2 |
ИТОГО | 140 кг/м2 | 196 кг/м2 | |
Ветер (q9) | |||
Временные нагрузки: — ветер |
15 кг/м2 |
1,4 |
21 кг/м2 |
ИТОГО | 15 кг/м2 | 21 кг/м2 |
Определяем нормативную и расчетную нагрузки на фундамент:
qнорм = 183,8кг/м2 · 4,05м + 173,4кг/м2 · 4,05м + 100,6кг/м2 · 4,05м + 120,9кг/м2 · 5,9м + 1000кг/м2 · 1,9м + 640кг/м2 · 0,73м + 200кг/м2 · 6,85м + 140кг/м2 · 5,9м + 15кг/м2 · 2,95м = 7174,85 кг/м.
qрасч = 232,9кг/м2 · 4,05м + 220,7кг/м2 · 4,05м + 126,5кг/м2 · 4,05м + 154,3кг/м2 · 5,9м + 1100кг/м2 · 1,9м + 704кг/м2 · 0,73м + 220кг/м2 · 6,85м + 196кг/м2 · 5,9м + 21кг/м2 · 2,95м = 8589,05 кг/м.
Ленточный вид
Применительно к ленточному основанию расчет производится с учетом несущей способности грунта. Если значение воздействия на почву несколько выше допустимого, то проблема решается раздвижением опорной площади нулевого уровня, то есть увеличивается ширина ленты.
С помощью ряда размерных конфигураций путем перемножения получается объем рабочей конструкции, который в свою очередь умножается на плотность бетона. Полученный результат покажет массу основания. Далее опорная площадь ленточного фундамента определяется умножением ширины цоколя на его длину.
Площадь подошвы нулевого уровня дома разделить на общую длину всех несущих стен. Полученное значение будет равно минимально допустимой ширине ленточного фундамента, которая в свою очередь не может быть меньше толщины стены.
Нагрузка для столбчатой и свайной основы
В случае фундамента из столбчатых свай, если расчетное давление на грунт превышает допустимые значения, то необходимо увеличить количество либо диаметр свай. В некоторых ситуациях могут потребоваться оба варианта. Число свай, требуемых для конкретного строения, узнается из общего веса строительства поделенного на несущую способность отдельного столба. При этом последнее отличается в зависимости от вида сваи. Важно не забыть и о коэффициенте запаса 1,3 при вычислении массы здания.
Расчет нагрузки на столбчатый фундамент определяется исходя из количества устанавливаемых свай. Для этого площадь основания делится на число опор. Из полученного значения извлекается квадратный корень и результатом будет необходимый размер сечения одной сваи. Отдельным пунктом рассчитывается ширина и несущая способность ростверка свайного фундамента. Вычисления производятся по аналогии с ленточным типом.
Стоит отметить, что сваи для столбчатого фундамента выполняются шагом не более 2 м и располагаются в углах строения, а также в местах пересечения несущих конструкций. На сегодняшний день это наилучший вариант для дома, так как сваи устанавливаются ниже уровня промерзания грунта, что снижает риск возникновения дальнейших деформаций.
Общие рекомендации
Первоначальным проектным этапом является определение типа грунта. От этого будет зависеть глубина заложения будущего основания. Современных способов исследования существует масса, но самый доступный из них – выкопать несколько ям на участке земли под застройку и внимательно рассмотреть состав на срезе.
Глубина заложения цоколя определяется как зависимость показателей уровня сезонного промерзания почвы и типа грунта.
Тип грунта | Уровень промерзания | Глубина заложения |
Скальный | любой | любая |
Пески крупные и средние | любой | не менее 0,5 м |
Пески мелкие и пылевидные | более 2 м | то же |
Супеси | менее 2 м | не менее 0,7 м |
Суглинок, глина | менее 1 м | Не менее расчетной глубины промерзания |
Например: для Московского региона уровень промерзания грунта измеряется примерно в 140 см. На глинистой почве глубина заложения допускается только не меньше расчетной глубины промерзания. Отсюда величина заглубления цоколя будет не менее 1,4 м.
Определение нагрузки на основание здания позволяет:
1. выбрать наилучшее местоположение постройки;
2. свести к минимуму риск возникновения деформаций цоколя и стен;
3. предотвратить возможность проседания грунта и дальнейших деструктивных разрушений;
4. снизить расход используемых материалов.
Общее напряжение на фундамент делится на:
- постоянное – от всего строения;
- временное – от погодных и климатических условий.
Вес здания определяется суммарным подсчетом массы всех предметов, входящих в конструкцию дома, перекрытий, кровли, предполагаемой мебели и техники. Отсюда же вычисляется нагрузка стен на фундамент путем умножения площади и толщины стен и перегородок на массу основного материала.
Давление от кровли вычисляется исходя из величины проекции крыши, размера нагруженных сторон фундамента и общей массы. При этом играют роль конструктивные особенности, угол наклона и тип покрытия. Перекрытия также дают свое напряжение на нулевой уровень и опираются на две равнозначные стены. Площадь плиты равна величине здания, при этом необходимо учитывать их количество и удельный вес материала, из которого они изготовлены.
Показатель снегового давления воздействует на основание через стены и кровлю. Его легко можно определить, используя объем крыши, размер нагруженных сторон фундамента и общую снеговую нагрузку. Вес того или иного материала, снеговая и ветровая нагрузка – такие параметры, как правило, берутся из справочной литературы.
Суммируя показатели массы всей конструкции, полезную нагрузку, снеговой и ветровой коэффициент, получают общее значение давления на цоколь. Отдельно для дальнейших вычислений производится подсчет веса и площади фундамента.
Стандартная несущая способность любого грунта составляет 2 кг/см2. Коэффициент необходимо учитывать при определении ширины фундамента и предельно допустимого давления на почву.
Нагрузка на почву – это отношение веса здания вместе с основой к опорной площади цоколя. Величина не должна превышать 2 кг/см2. При несоответствии расчетного показателя значению стандарта решается вопрос об увеличении опорной площади основания в зависимости от его типа. При изменении конфигурации цоколя необходимо произвести новый расчет. Резюмировать все вышесказанное и автоматизировать процесс подсчета поможет онлайн калькулятор, который учитывает снеговую нагрузку конкретного региона и примерное наполнение дома (мебель, техника).
От чего зависит выбор фундамента
Выбор определенного вида фундамента будет зависеть от типа почвы, типа возводимой конструкции, особенностей самой конструкции дома и финансовых возможностей застройщика.
Тип почвы (грунта) определяется простым тестом, во время которого на участке застройки в нескольких местах роется яма глубиной не менее 2-х метров.
Самой большой несущей способностью обладают скальные и полускальные почвы, однако они встречаются довольно редко и в определенных местностях. Это грунты практически не подверженные силам пучения и позволяют возводить здания на любом типе фундаментов, за исключением свайного.
Однако чаще всего частным застройщикам приходится иметь дело с глинистыми, песчаными, торфяными, илистыми грунтами или суглинком.
Так как эти грунты относятся к пучинистым, то выбор фундамента будет зависеть от некоторых характеристик:
- пучинистый слой,
- промерзание,
- грунтовые вода (наличие и уровень расположения)
Как правило, при рытье котлована или установке свай часть пучинистого слоя грунта заменяется непучинистым – песком. Это добавляет фундаменту устойчивости.
От промерзания зависит степень заглубления фундамента. Оптимальным является углубление фундамента ниже метки промерзания.
Грунтовые воды также влияют на выбор типа фундамента. Так, при достаточно близком нехождении грунтовых вод (1 метр вглубь земли), то лучше всего для дома на таком участке выбирать плитное основание. При более глубоком расположении – возможны и другие варианты, например незаглубленный ленточный фундамент.
Площадь подошвы фундамента
Расчет необходимой толщины подошвы фундамента – важный этап в строительстве дома. Этот этап отпадает, если вы решили устроить под домом плитный фундамент, ведь в данном случае плита-основание располагается по всей площади основания здания.
Однако, если вы остановили свой выбор на ином типе фундамента, расчет подошвы поможет не только устроить фундамент нужной толщины, который будет прочно и надежно держать стены дома, но и позволит избежать лишних затрат на строительство фундамента. Правильный расчет поможет понять, насколько массивным должен быть фундамент для вашего конкретного дома и избавит вас от необходимости потратить лишние средства на устройство основания дома, если в этом нет необходимости.
Приведем формулу для расчета площади подошвы фундамента: S > 1,2 F/(b *R) .
В формулу подставляются следующие переменные:
- S (площадь подошвы, единицы измерения — см2);
- 1,2 ( повышающий коэфф-т надежности);
- F (вес будущего дома, единицы измерения — кг),
- R (используемое для расчетов сопротивление основания, несущая способность, единицы измерения — кг/см2, ).
- b (коэффициент условий работы, берется из таблицы в зависимости от типа грунта на участке).
Вес дома включает в себя полный вес самой конструкции дома, вес фундамента, нагрузку при эксплуатации (примерный вес будущих жильцов, мебели, приборов отопления и т.п.) и сезонные нагрузки (снеговой слой на крыше).
Расчетное сопротивление будет зависеть от типа грунта и глубины заложения фундамента и вычисляется в соответствии с данными таблиц СНиП *.
Как мы видим из формулы, немаловажной составляющей для расчета подошвы является вес будущей конструкции ( дома или иного здания).
Общий вес конструкции дома
При расчете общего веса дома в строительстве используются таблицы, в которых приведен примерный вес конструкций дома в зависимости от материала их исполнения.
Данные величины приведены в таблице ниже.
Используя эти данные, вы вычислите общий вес дома. Для этого вычисляем площадь каждой части дома (стен, перекрытий, пола и потолка, кровли и др.) и умножаем полученную величину на приведенное в таблице значение. Не забываем прибавить к полученной величине вес самого фундамента, эксплуатационную и сезонную нагрузки.
Он-лайн калькуляторы
Для расчета фундамента существуют он-лайн калькуляторы, которые уже имеются в интернете и скоро будут реализованы у нас на сайте. Используя этот калькулятор, можно рассчитать общую длину и площадь подошвы ростверка, общий объем бетона и др.
Пример подсчёта потребности в сваях
Для примера расчёта возьмём одноэтажный дачный дом:
- с крышей из металлочерепицы;
- стены бревенчатые;
- перекрытия деревянные;
- размер 6 Х 6 м;
- без фундаментальной печи;
- высота стен 2,4 м.
Расчет:
- вес стен из бревна: 2,4 (высота) Х 24 (периметр) Х 600 = 34560;
- вес перекрытий: 36 (площадь) Х2 Х 100 = 7200;
- вес крыши: 54 (площадь) * 20 = 1080;
- полезная нагрузка: 100 Х 36 = 3600.
Сборный вес дома: 34560+7200+1080+3600=46440 кг.
Снеговую нагрузку определяем для севера нашей страны по номинальной массе снежного покрова 190 кг\м2. Отсюда расчет равен: 6х6х190=6840 кг.
Итоговый сборный вес: (46440+6840) Х 1,2 (запас) = 63936 кг.
Выбираем сваю самого популярного размера 89*300мм при её погружении на 2,5 м с несущей способностью 3,6 т, а сводный вес также переводим в тонны. 63,9 : 3,6 = 17,75 шт. — понадобится 18 штук винтовых свай.
Далее сваи распределяются по свайному полю с учётом первоочередной установки в углах, примыканиях и пересечениях. Количество буронабивных свай будет соответствовать расчёту количества свай винтовых при соблюдении аналогичных параметров.
Для расчёта нагрузок, подбора оптимальных параметров свай и их количества, а также расчёта ростверка, разработаны специальные компьютерные программы, например, StatPile и GeoPile, облегчающие и упрощающие задачу по устройству фундаментов.
Этап III. Корректировка размеров фундамента
Итак, остается только расчет бетона на ленточный фундамент – его объем будет равен кубатуре самого фундамента. Как ее вычислить? Очень просто – ширину ленты умножить на высоту и на общую длину. Обычно ширина ленты не превышает 40 см, длина – это сумма дли всех стен бани, которые являются несущими, а высота – это значение надземной части плюс подземная.
Вот и все: подготовка к возведению нулевого уровня бани всегда, конечно, кропотливая и отнимает немало времени и сил, зато минимум три поколения будут париться в любимой парной со спокойной душой.
Правильно просчитанный и спроектированный фундамент
Расчет нагрузки кровли
Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.
Таблица 3 – Удельный вес разных видов кровли
Справочная таблица — Удельный вес разных видов кровли
- Определяем площадь проекции кровли. Габариты дома – 10х8 метров, площадь проекции двускатной крыши равна площади дома: 10·8=80 м2.
- Длина фундамента равна сумме двух длинных его сторон, так как двускатная крыша опирается на две длинные противоположные стороны. Поэтому длину нагруженного фундамента определяем как 10·2=20 м.
- Площадь нагруженного кровлей фундамента толщиной 0,4 м: 20·0,4=8 м2.
- Тип покрытия – металлочерепица, угол уклона – 25 градусов, значит расчетная нагрузка по таблице 3 равна 30 кг/м2.
- Нагрузка кровли на фундамент равна 80/8·30 = 300 кг/м2.
Расчет снеговой нагрузки
Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.
Таблица — расчет снеговой нагрузки на фундамент
- Длина ската для крыши с уклоном в 25 градусов равна 8/2·cos25° = 3,6 м.
- Площадь крыши равна длине конька умноженной на длину ската (3,6·10)·2=72 м2.
- Снеговая нагрузка для Подмосковья по карте равна 126 кг/м2. Умножаем ее на площадь крыши и делим на площадь нагруженной части фундамента 72·126/8=1134 кг/м2.
Расчет нагрузки перекрытий
Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.
Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.
- Площадь перекрытий равна площади дома – 80 м2. В доме два перекрытия: одно из железобетона и одно – деревянное по стальным балкам.
- Умножаем площадь железобетонного перекрытия на удельный вес из таблицы 4: 80·500=40000 кг.
- Умножаем площадь деревянного перекрытия на удельный вес из таблицы 4: 80·200=16000 кг.
- Суммируем их и находим нагрузку на 1 м2 нагружаемой части фундамента: (40000+16000)/8=7000 кг/м2.
Расчет нагрузки стен
Нагрузка стен определяется как объем стен, умноженный на удельный вес из таблицы 5, полученный результат делят на длину всех сторон фундамента, умноженную на его толщину.
Таблица 5 – Удельный вес материалов стен
Таблица — Удельный вес стен
- Площадь стен равна высоте здания, умноженной на периметр дома: 3·10·8=240 м2.
- Объем стен – это площадь, умноженная на толщину, он равен 240·0,4=96 м3.
- Находим вес стен, умножив объем на удельный вес материала из таблицы 5: 96·1800=172800 кг.
- Площадь всех сторон фундамента равна периметру, умноженному на толщину: (10·2+8·2)·0,4=14,4 м2.
- Удельная нагрузка стен на фундамент равна 172800/14,4=12000 кг.
Предварительный расчет нагрузки фундамента на грунт
Нагрузку фундамента на грунт расчитывают как произведение объема фундамента на удельную плотность материала, из которого он выполнен, разделенное на 1 м2 площади его основания. Объем можно найти как произведение глубины заложения на толщину фундамента. Толщину фундамента принимают при предварительном расчете равной толщине стен.
Таблица 6 – Удельная плотность материалов фундамента
Таблица — удельная плотность материало для грунта
- Площадь фундамента – 14,4 м2, глубина заложения – 1,4 м. Объем фундамента равен 14,4·1,4=20,2 м3.
- Масса фундамента из мелкозернистого бетона равна: 20,2·1800=36360 кг.
- Нагрузка на грунт: 36360/14,4=2525 кг/м2.
Расчет общей нагрузки на 1 м2 грунта
Результаты предыдущих расчетов суммируются, при этом вычисляется максимальная нагрузка на фундамент, которая будет больше для тех его сторон, на которые опирается крыша.
Условное расчетное сопротивление грунта R0 определяют по таблицам СНиП —83 «Основания зданий и сооружений».
- Суммируем вес крыши, снеговую нагрузку, вес перекрытий и стен, а также фундамента на грунт: 300+1134+7000+12000+2525=22959 кг/м2=23 т/м2.
- Определяем условное расчетное сопротивление грунта по таблицам СНиП —83. Для влажных суглинков с коэффициентом пористости 0,5 R0 составляет 2,5 кг/см2, или 25 т/м2.
Из расчета видно, что нагрузка на грунт находится практически на пределе допустимой, поэтому для увеличения прочности подошву фундамента целесообразно расширить на 0,2-0,3 м.
Расчет нагрузки перекрытий
Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.
Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.
Таблица 4 – Удельный вес перекрытий
Таблица расчет веса перекрытий и их нагрузка на фундамент
- Площадь перекрытий равна площади дома – 80 м2. В доме два перекрытия: одно из железобетона и одно – деревянное по стальным балкам.
- Умножаем площадь железобетонного перекрытия на удельный вес из таблицы 4: 80·500=40000 кг.
- Умножаем площадь деревянного перекрытия на удельный вес из таблицы 4: 80·200=16000 кг.
- Суммируем их и находим нагрузку на 1 м2 нагружаемой части фундамента: (40000+16000)/8=7000 кг/м2.
Нагрузка на плиту перекрытия в панельном доме старой постройки
Определяя, какой вес выдерживает плита перекрытия в квартире старого дома, следует учитывать ряд факторов:
- нагрузочную способность стен;
- состояние строительных конструкций;
- целостность арматуры.
При размещении в зданиях старой застройки тяжелой мебели и ванн увеличенного объема, необходимо рассчитать, какое предельное усилие могут выдержать плиты и стены строения. Воспользуйтесь услугами специалистов. Они выполнят расчеты и определят величину предельно допустимых и постоянно действующих усилий. Профессионально выполненные расчеты позволят избежать проблемных ситуаций.
Дополнительные нагрузки на опору от ОКНН
Учитываются:
- Нагрузка на провод/трос от ОКНН с учетом увеличения воздействия гололеда и ветра;
- Временное воздействие монтажного оборудования (навивочной машины).
Рис. 10. Для расчета ОКНН используется эквивалентный диаметр ГТК.
Рис. 11. Применение навивочной машины.
Примером расчета нагрузок на опору может служить результат работы в конфигураторе «ВОЛС на ВЛ с ОКСН». Смотрите по ссылке ниже подробный пример расчета с указанием источников нормативной и методологической информации: -calc_files/suspension_tower_loads_20-11-2017_
Конфигуратор предназначен для автоматизации различных этапов проектирования подвесных ВОЛС:
- выбора и подсчета необходимых комплектующих (кабель, арматура, муфты),
- осмечивания проекта по материалам,
- предоставления готовых чертежей по типовым узлам и решениям,
- проверки соответствия проектных решений актуальным нормативным документам и методикам,
- проверки совместимости различных материалов и узлов между собой.
Конфигуратор позволяет выполнить следующие автоматизированные расчеты:
- выбор марки кабеля,
- расчет оптимальных строительных длин,
- подбор виброгасителей и составление схемы виброгашения,
- расчет тяжений и стрел провеса,
- расчет нагрузок на опоры от подвеса ВОК,
- расчет на сближение с фазными проводами при различных климатических воздействиях и при возникновении пляски,
- расчет наведенного электрического потенциала вблизи опоры и определение допустимых точек подвеса ОКСН (выдача результата из проведенных ранее расчетов для типовых опор).
Перейти в конфигуратор «ВОЛС на ВЛ с ОКСН»
Если вы являетесь инженером-проектировщиком или руководителем проектного отдела строительной организации, занимающейся строительством магистральных ВОЛС и хотели бы повысить свою квалификацию или квалификацию специалистов вашего отдела, рекомендуем вам обучение на курсе «Проектирование ВОЛС». Актуальное расписание ближайших занятий, программу курса и всю информацию по вопросам подачи заявок на обучение вы сможете найти в разделе «Обучение».
Посмотреть все доступные курсы
Илья Смирнов, технический эксперт, преподаватель
Смотрите также:
- Подскажите как правильно нужно подвесить и закрепить ВОК при изменении высоты точки крепления кабеля к телу опоры? Например: анкерный участок…
- Расчет характеристик оптического кабеля, стрел провеса и нагрузок при различных климатических условиях
- Какую нагрузку оказывает натяжении 50м пролет ВОЛС (например ДОТС-8 самонесущий 7кН ) на металлическую опору?
- Монтаж муфты МТОК-А1 с поиском повреждения ВОК в реальных условиях
- Подвеска ГТК Инкаб — таблицы стрел, нагрузок и типовые решения
Пример расчета
Использование приведенных выше расчетов позволит правильно определить необходимые размеры фундамента и обезопасить себя на долгие годы надежным строением. А чтобы было легче понять, как использовать величины, следует посмотреть пример расчета нагрузок на фундамент.
В качестве данных для примера возьмем одноэтажный дом из газобетона, расположенный в зоне, защищенной от снега и ветра. Двускатная крыша с наклоном в 45%. Фундамент – монолитный ленточный 6х3х0,5 м. Стены: высота 3 м и толщина 40 см. Почва – глина.
- Нагрузка кровли рассчитывается по нагрузке 1 м2 проекции, в этом примере – 1,5 м. Удельный вес из пункта 6 — 50 кг/м2 / Нк = 50*1,5 = 75 кг.
- Нагрузка стен определяется умножением высоты и толщины на удельную справочную нагрузку из пункта 2: Нс = 600*3*0,4 = 720 кг.
- Нагрузка перекрытий находится перемножением грузовой площади на величину из пункта 4: Нп = (6*3 / 6*2) * 500 = 750 кг. Грузовая площадь определяется отношением площади фундамента к длине тех его сторон, на которые давят лаги перекрытия.
- Нагрузка от ленточного основания (Q для бетона и щебня – 230 кг/м2): 6*3*0, 230 = 1656 кг.
- Нагрузка на один метр основы: Но = 75+720+750+1656 = 3201 кг.
- Справочная величина нагрузки для глины: Сг = 1,5 кг/см2. В примере отношение нагрузки к площади основы равно: Ну = 3201/1800 = 1,8 кг/см2, где 6х3 = 18 м2 = 1800 см2.
Из примера видно, что для таких исходных данных размер выбранного фундамента недостаточен, так как значение расчетное больше допустимого справочного и не гарантирует надежности постройки. Нужная величина определяется поэтапным подбором.
При планировании строительства расчеты и их анализ проводить нужно обязательно, иначе последствия применения неправильных значений могут быть плачевными.
Определение несущей способности грунта
Характеристика влияет на высоту заложения фундамента и площадь его подошвы и определяется свойствами почвы. Влажные земли более неустойчивые и отличаются низкой прочностью. Пески средней и большой фракции не изменяют качеств после увлажнения.
Тип грунта можно определить самому, но его несущая способность регламентирована в справочных таблицах нормативных документов. Земля под домом может состоять из нескольких слоев, поэтому принимают ту категорию, которая превалирует перед остальными пластами.
Влажность определяют на глаз. Если в прорытой скважине или яме не прибывает вода и не скапливается там, грунт относится к категории сухих. Появление влаги на дне говорит о приближении отметки грунтовой жидкости, и земля считается влагонасыщенной.
Определение толщины монолитной плиты основания
Как правило, при частной застройке принимаются усредненные величины. Для наиболее распространенных видов конструкций они указаны ниже
Этажность и материал стен здания | Толщина фундаментной плиты (мм) | Армация |
Легкие постройки: веранды, хозяйственные помещения, гаражи | 150 | один ряд сетки |
Двухэтажные легкие дома (пено- или газобетон, каркасные) | 250 | объемно в два уровня |
Двухэтажные дома из кирпича и бетона с тяжелыми перекрытиями | 300 | объемно в два уровня |
При этом данные значения справедливы:
- для грунтов с нормальной несущей способностью;
- диаметр прутка армирования для легких строений 10 мм;
- диаметр горизонтального стержня для двухэтажных строений 12-16 мм;
- размер стороны ячейки сетки армирования 0,1 м;
- вертикальный прут берется размером 8 мм.
Если здание не подходит под типовые данные, можно воспользоваться онлайн калькулятором.
Армирующую сетку в монолитных плитах фундамента не принято сваривать. Чаще её вяжут специальной проволокой, что дает дополнительную гибкость основанию.